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To understand the phenomena of initiation and low velocity detonation in liquids an 
approximate generalized description of bubble motion is suggested. Within this frame- 
work it is essential for any detonation to have a two-phase system of high and low com- 
pressibility of the components. The dynamic activated high compressibility component 
(bubble or void, cluster of chemical reaction) always has a phase-locked conservative 
radiation loss, and in addition, dissipative losses. These force a chemical decomposition 
in reactive liquids, so that a pressure-coupled chemical reaction is possible. In media of 
poor reactivity a decoupling may also occur, and, if the radiation loss dominates, even a 
nonchemical “detonation”, in the sense of a shock wave amplification, becomes possible. 
The dissipative loss at the boundary of a bubble or void is governed by the medium’s 
viscosity, and is, under some circumstances, the controlling factor. Questions concerning 
Bowden’s hot spots are discussed, and another suggestion, that initiation should occur via 
dynamic bubble surface instabilities, is explored. 

Introduction 

In spite of the fact that it is mostly accepted that a low velocity detona- 
tion (LVD) involves a two-phase system (matrix with low compressibility 
and second phase - bubble, void or crack etc. - with high compressibility), 
several questions are not well understood, mainly initiation problems, and 
the coupling or decoupling of the chemical reaction with the pressure wave. 
Accepting Bowden’s adiabatic hot spots [1,2], it is not easy to understand 
that different bubble contents do not lead to accordingly different sen- 
sitivities. Thus Hay and Watson [3] have found a LVD threshold of >2 kbar 
for the system of nitroglycerine/EGDN = 50/50 in the presence of voids, 
about 1.5 kbar for air and CO2 bubbles, and for Ar bubbles somewhat less, 
<1.5 kbar. Since Mader’s [4] hydrodynamic hot spot approach does not 
work for such low pressures, one may ponder the question of what really 
initiates the reaction? Some authors [ 5-71 have discussed the concept that 
initiation may take place via dynamic bubble surface instabilities, but con- 
sidering the experimental results of Coley and Field [8,9] no such mech- 
anisms are to be detected. 
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A further point of concern with respect to questions of safe handling is 
the nitromethane (NM) problem. For a long time it had been assumed that 
neat NM would not undergo a LVD; a theoretical model [lo] had also con- 
firmed this. Groothuizen [ 111 has demonstrated that a LVD of neat NM is 
possible, but its existence seemed to depend on the presence of a probe for 
measuring the detonation velocity. Kozak et al. [ 121 have shown that a LVD 
in thick-walled cylinders really is a reproducible event, where detonation 
velocity depends on the thickness of the walls, and Schilperoord [ 131 has 
confirmed this. Nevertheless, in 1958 there were two accidental NM tank car 
explosions with no apparent stimulation [ 141. These accidents are very 
similar to those of tank car explosions of pressurized liquid gases, which 
sometimes occur spontaneously [ 151. From the evidence given by the dis- 
tance of the debris, we have to conclude that only an explosion within the 
tank can explain this occurrence. From the classical point of view explosions 
of chemical inert liquid gases are impossible, but the cited accidents and 
experimental evidence [ 161 of shock wave amplifications in chemically inert 
two-phase liquids suggest that one has to consider this somewhat unusual 
option. Mainly with respect to safety considerations, it is desirable to find a 
key to understand in a better way the underlying principles of this 
behaviour. 

In the following sections, therefore, the dynamics of a single bubble or 
void are considered. Usually we do not know in practical cases the exact 
status of such a bubble or void, so we are not interested in exact solutions. 
More helpful is a simple analytical model, which allows an approximate 
generalized description of the possible behaviour. Such a description has long 
been available for small-amplitude motions of bubbles [ 171. This solution is 
applied to large-amplitude motions. This step is justified by the fact that the 
time of collapse of a bubble in a loss-free medium corresponds to that of the 
classical Rayleigh collapse [ 181 and more refined versions of the Rayleigh 
equation. Medium nonlinearities are not considered. In the following, the 
algorithms of this estimate are presented, which will be applied in another 
paper to practical problems of safety. 

Devin’s bubble dynamics 

From the Lagrangian equation Devin [ 171 has found for small-amplitude 
motions of spherical bubbles of initial volume V, = $nRg actuated by an 
external stimulation with a pressure -p(t) the apparently “simple” harmonic 
equation 

m’++biT+KV= I 0 

-P(t) 

if the coefficients are constant (which is not actually the case). 
Devin determines the coefficient of mass as follows 

m = p_/4nR0 . (2) 
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As shown later, for larger bubbles of size kR one obtains 

m = pJ4nR(l+ k2 R') . 

For a constant polytropic index, r’, one gets for the stiffness, K 

R = Y’PolVo 

and the damping coefficient 

b=wfJm&.&. 

As usual, one gets by 

K 

ii- 
- =wg 
m 

(3) 

(4) 

(5) 

(6) 

or 

k’R = ,/m (based on bubbles content) 

or 

kR = A dm (based on the surrounding medium) 

a resonance frequency of the bubble, or a resonance size, which corresponds 
to that of Minnaert [ 191. Later this expression will be expanded for larger 
sources of size kR = 2nR/A. 

As a rule of thumb one may take for not too unusual liquids at the 
ambient pressurep, in bar, where f,, is given in Hz, and R. in cm 

foRo = 3006, (7) 

kR 40.0247. (8) 

In these expressions p, is the density of the surrounding medium, 7’ is the 
appropriate radius dependent polytropic index of the bubble content and p. 
its pressure, c’ and p’ are the corresponding sound velocity and density, and 
k’ = w/c’; t&t is the total loss of bubble vibration, which consists of a con- 
servative radiation loss, Grad, and dissipative losses. 

As will be seen in the case of a conservative loss, b+ corresponds to a 
pressure source, where 9 is given by 

ti= 4nR=R (9) 

In the case that no mass transfer between the content of the bubbles and 
the surrounding medium takes place, the identity due to Plesset and 
Prosperetti [ 201 holds 
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&p”u, P' + - u, N Ur 
P, -p' - P, -p' 

(10) 

which is connected with the “plane wave” particle velocity, up. Obviously 
the condition in eqn. (10) only holds approximately in the case of the onset 
of chemical reaction at the bubble surface or in the case of evaporation- 
condensation processes. 

Radiation loss 

Assuming again harmonic V variations, one gets for the wave impedance, 
2, at the surface of the monopole source (r = R), see Ref. [ 211 

p” p” 
z=;z- = T =p,c, 

k2R2 
+ iw P,R 

Up Ur 1+ k2R2 1 f k2R2 
(11) \ I 

= Rr + iwm, 

The real part of eqn. (11) is the radiation resistance, R,, and the imaginary 
part, m,, corresponds to the frequency-dependent acoustic mass. This latter 
part is sensitive to the shape of the source, whereas the radiative part is not. 

Combining now the radiative part of eqn. (1) with eqns. (9) to (ll), one 
gets, by using the identity for harmonic motions, 

‘f = io+ (12) 

Rr b’Ei= - 
4nR2 

++ --!2- 
4nR2 

v (13) 

So in eqn. (1) c is related to a pressure wave emission, and ‘G with a pres- 
sureless (near field) flow, and one gets for monopole sources of arbitrary size 
kR for the mass in eqn. (1) the formerly given eqn. (3), which now also 
changes Minnaert’s resonance frequency, wO, to 

12 

A2 A2 2 
c 3(P’/PJ 

0 : 
= w (I + k R ) = z l- 3(p’/pm)(c’/c_)2 

For the radiation loss one gets 

&ad = 
Rr 

4nR2m2 
= jZR 

i/ 

3pV2 = 
Lc2, - 3p’c’2 

(14) 

(15) 

The term 
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corresponds to the real part of the pressure, and we can attribute the imag- 
inary part of the pressure to the near-field term governed by V, which is out 
of phase with the radiation governed by V. 

For low pressures the radiation loss may also be calculated according to 
the methods of Devin [ 171 or Nishi [ 241. 

Dissipative losses 

Up to now the most pronounced dissipative losses have been formulated 
by several authors as the thermal loss, &, and the viscous loss, 6,+ In deton- 
its this thermal loss corresponds to Bowden’s adiabatic hot spot [ 1;2], and it 
will appear that this, of course, is not strictly valid. The physical reason is 
quite clear: If the sources are small, so that the mean free pathlength of the 
molecules is comparable to the dimensions of the bubble, an adiabatic heat 
ing is unrealistic. On the other hand, if the sources are large, and their pulsa- 
tion becomes long in time, heat conduction again causes adiabatic heating to 
fail. So there exist optimum bubble sixes for adiabatic hot spots. 

Less well known is the effect of viscous loss, in spite of the fact that 
viscosity had been considered by several authors in a somewhat different 
context, see for example the Summary [ 21. The dynamic activated bubble 
experiences a powerful shear generator at the boundary layer to the viscous 
medium. Under some circumstances this viscous loss exceeds the thermal 
loss. 

Thermal loss 

Using the thermal diffusivity of the bubble content 

D’ = K’/P’C;) (171 

where K’ is the heat conductivity, p’ the density, and cb the heat capacity at 
constant pressure of the bubble content, Pfriem [ 221, Devin [ 171 and 
Kapustina [ 231 obtain for the case of resonance 

sinh z + sin z 2 
-- 

cash z -cosz 2 
6th = 

sinh z - sin 2 z 
+ 

cash z - cosz 3(+ - 11 

where 

(18) 
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Whereas Pfriem takes for R Minnaert’s radius, Ro, and further assumes a 
constant polytropic index, r’, Devin [17] and Kapustina [23] additionally 
take into account the surface tension, u,, of the liquid as well as a variable 
polytropic index, (i/e). For the correction of R they use 

R=Ro g 
ii- a 

where 

(20) 

(21) 

(22) 

- - 
cu=l+ 3(r’ 1) [ 1 + 3(r’ 1) 2 z 1 
g=1+20__ 2%a 

POR 3~oRty’b) 

The last part of eqn. (22) contains the dependence of the polytropic index as 
(y’/cr), and one sometimes obtains by calculation lower values than 1. This 
has to be avoided, of course. Within this set of equations 6th may be cal- 
culated by iteration. 

Contrary to the above authors Nishi [ 241 calculates D’ by using the spe- 
cific heat capacity at constant volume c’v. Using 

he calculates with eqn. (18) an intermediate value at resonance St. He cor- 
rects Minnaert’s resonance frequency by 

- g 
wo =wo - 

f E 

where the stiffness correction is 

e = (1 + St)* 
3(r’ - 1) sinh d - sin d 

+1 
d cash d - cos d 1 

and 

g=l+ 200 
RP, (l-$) 

Finally he gets for the thermal loss for arbitrary driving frequencies, w, 

6th = (Wo/w)2 ;(l+$j 

(24) 

(25) 

(26) 

(27) 

He further obtains a polytropic index not below 1. 
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viscous loss 

As the source changes its volume the elements of the surface boundary are 
distorted, so that in this boundary layer rate-dependent viscous losses are 
activated. 

In the case of resonance Devin uses 

6 = &rfq.__~ 4V_ 
71 =- 

WPd a~_$= 

and for arbitrary frequencies w one gets according to Nishi 

(28) 

(29) 

where r)_ is the viscosity of the medium. 
All the above formulae have been obtained .by small argument approxima- 

tions, and so will hold for small sources only. Also, the validity of the ex- 
pressions has been checked by ultrasonic experiments, and the errors are 
small (see Refs. [ 17,23, and 251. 

Examples for calculated losses 

As shown, the losses are to be calculated using physical quantities. The 
data from various references of some possible bubble contents are summar- 
ized in Table 1, and of some reactive liquids in Table 2. 

In Fig. 1 the losses are calculated for a very sensitive and powerful explo 
sive like nitroglycerine (NG) with bubbles of various sizes and gas content. 
As can be seen, the quality of gas content shows no very important in- 

TABLE 1 

Properties of some gases as bubble content (normal condition) 

Y’ ’ 
;(;W/cm K) F10-3 / ” ‘” 

D’a D’V 

g cm”) (J/s K) (J/s K) (cm*/s) (cm’ /s) 

Helium 1.66 1430 0.1787 5.172 3.116 1.547 2.568 
Argon 1.67 164 1.783 0.520 0.312 0.177 0.295 
Hydrogen 1.41 1810 0.08987 14.312 10.196 1.407 1.975 
Nitrogen 1.40 240 1.251 1.040 0.743 0.185 0.259 
Air 1.40 260 1.2505 1.0398 0.7427 0.200 0.280 
Methane 1.30 303 0.7168 2.228 1.712 0.190 0.247 
Propane 1.13 151 2.019 1.668 1.480 0.045 0.051 
NM vapor, 1 bar 1.20 135 2.72 0.823 0.0603 0.0724 

27.3 Torr 0.098 1.65 

aD varies with pressure approximately as l/p. 
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Fig. 1. Losses of resonant bubbles in NG at 1 bar and 100 bar ambient pressure. The 
losses are shown for very different gas content of the bubbles. The radiation loss for 1 bar 
is not drawn, it amounts to 0.01. The pointed lines indicate a low-frequency approx- 
imation given by Devin for the thermal loss. 

fluence, in spite of the fact that large variations of y’ and the thermal con- 
ductivity have been considered. Also, the losses for an ambient hydrostatic 
pressure of 100 bar are calculated, where these are shifted into a high fre 
quency region (or tiny bubbles). So it is possible that they may not be acti- 
vated by a usual stimulation of lower frequency. The overall sensitivity of 
NG is caused possibly by the superimposition of the thermal and viscous 
losses. 
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TABLE2 

Ropertiesofsomeliquidreactivesubetences 

0, Vaporpressure 
(dynlcm) ;i% cm/s) (Tar) 

Nitroglycerine. NG 
Glycoldinitrate. GDN 
Methyleneglycoldinitrate, DEGN 
Nitromethane,NM 
Tetmnitromethane.TNM 
i-Ropylnitrate,i-PN 
n-Ropylnitrate, n-PN 
Liquid TNT 

fiquidammoniumnitrate 

20 
20 
20 
20 
20 
20 
20 
81 
86 

100 
160 

1.694 0.36 
1.488 0.0421 
1.38 0.081 
1.130 0.00613 
1.64 0.0176 
1.049 0.0066 
1.0673 0.0069 
1.462 0.1198 
1.456 0.109 
1.443 0.0762 

60.73 1.486 
1.414 

37.0 1.313 
30.34 1.039 

27.24 ca. 1.1 
47.0 1.61 (7) 
46.6 
46.1 

1.060 

2.610-' 
0.038 
0.0036 

30 
8.04 

38 
18.66 
0.0139 
0.0186 
0.0614 

In Fig. 2, the case of nitromethane (NM) (which usually is a flammable 
liquid but sometimes behave8 like an explosive) is considered. This oc- 
currence may be caused by the separation of the thermal and viscous losses, 
which lead8 to a dissipative loss-gap for activating frequencies of 
lo’-lo6 Hz, which is more pronounced for void8 than for air bubbles At 
the top of Fig. 2, the losses of tetranitromethane (TNM) are shown. In these 
case8 the radiation loss is not presented. 

Fig. 2. Thermal and viscous losses of a vapor-cavity in TNM and NM, and of an air bubble 
in NM as a function of the frequency, with respect to the corresponding source size. Note 
the dissipative loss gaps for 105-lo6 Hz for the cavitation bubbles in TNM and NM. 

Figure 3 compare8 the results for air bubble8 in NM using Devin’s and 
Nishi’s algorithms. 

Finally, Fig. 4 shows the loss factors of a chemically inert liquid, cold 
pressurized liquid carbon dioxide, which nevertheless sometimes produces 
explosions due to the radiation loss in the two-phase state. 

In summary, the radiation loss and the dissipative losses are phase locked. 
If these dissipative losses force a chemical reaction, a pressure-coupled chem- 
ical reaction is possible. Contrary to the classical view, in systems of marginal 
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Fig. 3. Comparison of the algorithms of Devin-Kapustina and Nishi for air bubbles in 
NM. D’ is a constant value for both calculations. The radiation loss is calculated for the 
low-pressure approximation of the mentioned authors. 

chemical reactivity a decoupling of pressure and reaction waves becomes 
possible - and in the limiting case of an inert liquid a pressure wave without 
any reaction - provided that a non-chemical energy content allows this. 

Surface oscillations 

In addition to pulsations, a bubble may also produce surface oscillations, 
which have been related by various authors [ 5-71 to initiation phenomena. 
The idea is that such surface motions destroy the shape of a bubble, and 
consequently droplets of the surrounding medium are injected into the 
adiabatically heated gas content of this (former) bubble. An initiation should 
occur via a droplet/(air) combustion or explosion. However, this concept 
ignores the fact that even an onset of combustion depends on certain critical 
geometrical dimensions. Therefore such a mechanism may be excluded, at 
least for tiny bubbles. 

It is therefore necessary to consider this idea in more detail. The bubble 
surface motion may be described by a Mathieu-type differential equation. 
Therefore, it is possible that such motions are powerfully amplified in a 
parametric way, but the sources show a multipole character, and therefore 
their effectiveness fails [ 201 for low Mach numbers. 
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Fig. 4. Losses of a resonance bubble in liquid pressurized carbon dioxide. The radiation 
loss dominates due to the ambient pressure of 15 bar and the low sound velocity of the 
liquid. 

A summarizing description of sources is possible by calculating relative 
scattering cross-sections equal to Qs/nR2. These cross-sections describe the 
factor by which the obstacle changes the corresponding properties of the 
surrounding medium of the same dimensions. For acoustically soft obstacles 
(P’c’ << p, c, ), like a bubble, Nishi gives the expression 

QS=; E (21+1) 
j; W-2 ) 

l=o 
jf(kR) + ni(kR) 

(30) 

where jl( ), and nr( ) are the spherical Bessel and Neumann functions (spher- 
ical Bessel functions of first and second kind) of order I corresponding to 
the type of source. In Fig. 5 this expression is given as a function of kR. As 
is well known, for small soft obstacles one gets the limiting value 4 and for 
large ones the value 2. More informative, however, is the calculation of the 
components of this expression for the orders 2 = 0 (monopole type), 1 = 1 
(dipole type) and I = 2 (quadrupole type). These components are shown in 
Fig. 6. As may be seen, for kR < 1 the monopole type is deciding, whereas 
for larger sources the multipole character becomes more and more dominant. 
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be seen, for kR < 1 the monopole character 
multipole character becomes more and more 
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In summary, for small sources a multipole character may be excluded; this 
means that the mechanism of surface vibration cannot work for small 
sources. This has also been fqund by Batchelor [ 261, that small voids behave 
as though they were rigid. For larger sources, however, this mechanism of 
surface instabilities may well be at work. Hullin [27] shows by experiments 
that the limit of bubble size stability seems to be defined by such a surface 
motion contrary to Levich’s assumptions [ 281. Therefore we may state that 
the ideas presented apply to small sources. If this condition does not hold, 
all the presented algorithms must be changed accordingly. 

For small&R-resonance-monopole sources the appropriate scattering 
cross-section is [ 241: 

47rR’ 
Qs= t1 - w;/w2)2 + s& (31) 

In Fig. 7 for air bubbles in NG, such cross-sections are presented, indicating a 
pronounced influence of bubbles on sensitivity. 
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Fig. 7. Relative cross-section of scattering for air bubbles, diameter 2R, in NG. As can be 
seen, tiny voids do not influence this value, whereas larger bubbles do by orders of mag- 
nitude. It is to be noted that this also agrees with experimental [ 291 evidence as will be 
discussed in more detail in a future paper. 

On the validity of this approach for small sources 

As shown, eqn. (1) for small amplitude vibrations actually has no constant 
coefficients. To assess the applicability of this equation in the case kR -C 1 to 
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problems of initiation and detonation, we compare the results of this equa- 
tion with the well-known Rayleigh equation on bubble motion: 

(32) 

which gives a good approximation even for large amplitude motions. Starting 
with eqn. (1) with constant coefficients, and assuming (R/R,) + 1, b = 0, 
and 7’ = 1, one gets a very similar expression 

REi’+2g2 +‘A =0 (33) 
PC0 

The reason for the difference 3/2 versus 2 is not resolved. 
In Rayleigh’s equation only the time of total collapse may be obtained in 

an analytic way 

t = 0.9147 R,, 
ll- 

.!f~ (34) 
PO 

whereas we get for zero loss from eqn. (1) 

(35) 

So we get the result that for approximation purposes eqn. (1) is far more 
suitable than Rayleigh’s equation. Equation (1) contains more information, 
and it may be treated in an analytic way; it may also be useful for 
generalizations. 

Generalization of equation (1) [30] 

Due to our interest in the general behaviour of bubbles, we make the 
following generalization in the case of constant coefficients. Using a dimen- 
sionless time 

r=cdot, 

and using the quantities 

v” = t;l& 

v’ = I&, 

v_ = -ptt)lK 

one gets for eqn. (1) 

(36) 

(37) 

(38) 

(39) 
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(40) 

and the initial conditions are found accordingly. 
A particle velocity jump is expressed in an appropriate initial value of Vb 

in the homogeneous eqn. (40); a jump of a constant pressure p(t) = -p 2 
-V_, is treated by the inhomogeneous eqn. (40). Both cases are tractable in 
an analytic way. 

With the abbreviation 

A = V,, - V_ 

one gets for the initial conditions for T = 0: V0 and V,: 

Case 6 < 2: 

d_=v 

VF V, + e-6rl2 A ~0s~~ + ‘A +A6’2 ( sin vr 
V 

) 

V’ = evsTi2 
( 

VA cos VT - 
A + V;6/2 

sin VT 
V ) 

V” = ,-6712 
A6/2 + (a2/2- l)V; 

sinvr-(6V;) +A)COSVT 
V 1 

Case 6 > 2: 

d_ = v’ 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

In the above eqns. (43)-(45), v is replaced by v’, sin by sinh, and cos by 
cash. 

If the coefficients are time dependent, one gets from eqn. (1) with the 
new variable 

(47) 

y+,;-t(t)2-t;($)3 y=O 
(48) 

leading to a Mathieu-type differential equation. Such an equation describes 
spontaneous explosions, as will be outlined in the appendix. 

Relations of energy and power 

By multiplication of eqn. (1) with V or V/Ku0 one gets 

(49) 



58 

or 

= [V,(T) - 6 V’] v’ (50) 

The terms in brackets on the left hand side represent the kinetic and poten- 
tial energy of the vibratory system, whereas the first part on the right hand 
side is the term added by the power of excitation, and the second part is the 
consumed power of the vibratory system. Integration leads to a form 

Etietic + Epotentti = Eexcitation - Edtipated + EO 

describing the energy distributions. 
The dissipative power of a source may be related to the actual original 

volume V, or to the instantaneous volume V(t). If this dissipative power is 
high, onset of chemical reaction becomes possible. Within this view, we do 
not know whether this chemical reaction is thermal decomposition, or 
possibly also bond scission reaction within the viscous shear layer. This link 
between dissipative power and chemical behavior is still not clear. 

Conclusion 

An attempt is made to describe and quantify approximately a single hot 
spot in a matrix. A dynamically activated hot spot emits pressure waves and 
the dissipative losses force the onset of a chemical reaction. A pressure 
coupled chemical reaction is caused by these phase locked losses. The intro- 
duction of viscous losses on the bubble surface, which acts as a dynamic 
shear generator, is new, and had first been suggested by this author [ 311. In 
accordance with experiments all steps distinctively require dynamic com- 
ponents to work. 
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Appendix l- Spontaneous explosions 

From the study of accidents [ 151 we know that explosions have occurred 
with no apparent initiation source or only a weak source, which is not linked 
with the onset of reaction in deliberate experiments. Such reactions we call 
spontaneous explosions. From case histories of these accidents we conclude 
that such explosions are only possible for mobile liquids such as nitro- 
methane or liquefied gases under pressure. In addition to these liquid sys 
terns, similar reaction in solid primary explosives such as lead azide is 
possible. 

It is appropriate to outline the principal mechanism of spontaneous ex- 
plosions in liquids, since up to now no classical explanation has been given. 

Mechanism of spontaneous explosions 
From the generalized eqn. (40) of source vibration the solution 

V(7) = Vein7 

is possible. Inserting this into eqn. (40) one gets 

V”+(l+i&S2)V=O 

Using the identities 

(A.11 

(A.21 

(A.31 

(A.4) 

l=h 

and 

i6C2 = y cos 7’ 
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one gets the well known Mathieu-type differential equation 

V”+(h+~cos7’)V=O (A.5) 

This equation is characterized by both stable and unstable solutions depend- 
ing on the values of X and -y cos 7’. From stability charts of the Mathieu 
differential equation one gets the proper domains of the different kinds of 
solution. Only for h = 1 and ia52 = 0 do we have stable solutions in each 
case. If i6a increases, the domain of possible unstable solutions also in- 
creases. This region of instability is characterized by the chance of an ex- 
ponential pressure amplification, if S is time dependent. This type of amplif- 
ication is called parametric amplification, and was described for the first 
time by Lord Rayleigh [ 321. Among all possible mechanisms of amplif- 
ication this type is the most powerful instrument for attaining high output 
very quickly, whereas the starting point is nearly (but not absolutely) zero. 
In the case of low viscous losses 6 is practically represented by the acoustic 
radiation loss, eqn. (15), which is time and pressure dependent. fi = 
w/w0 = 1 (approximately) is necessary for maximum output. This means 
that resonance conditions are required. For an ergodic source system, re- 
sonance is obtained if there are present a great number of very similar sized 
sources of the same phase within a vessel having the eigenfrequencies w of 
the natural frequencies of the sources c+. 

Physically the pressure sources (bubbles) in the liquid are collapsing in a 
coherent way. This process shows some similarities to the mechanism of a 
laser or maser. Lee et al. [33] call a similar process a swacer = shock wave 
amplification by coherent energy release. 

Vessel resonances 
According to the outlined idea, the probability of explosion of a two- 

phase system depends on the probability of occurrence in the vessel of 
volume V, a number of Am eigenfrequencies in the range of Af/f of source 
frequency. An estimation of possible eigenfrequencies of a vessel-is required. 
This task is simplified greatly for large vessels due to the fact that Weyl [ 341 
derived an asymptotic expression for 

nm=4nV$%4nYnf 
_f h3f 

(A-6) 

This means that the probability of spontaneous explosions increases with the 
volume of the vessel and decreasing sound velocity c_ of the vessel content. 
In addition, explosion probability depends on the radiation loss, Grad, in- 
creasing with pressure. 

In this way we have obtained for the first time a way to estimate the risk 
of an explosion from a specified physical model. 



62 

Explosion risk prediction - comparison with reality 
From the Railroad Tank Car Safety Research and Test Project [35] we 

obtained figures to test out the presented ideas. 
As is known, pressurized liquid gases and other liquids are transported in 

tank cars of mostly two sizes. The most frequently used type (in the U.S.A.), 
105A, has a volume of the order 41.6 m3, and the modern types 112A 
(114A), known as jumbo tank cars, range in volume from 110 up to 135 m3. 
The above-mentioned study compared the frequency of physical explosions 
(to be more exact, BLEVEs caused by an external fire) for LPG, NH3, vinyl 
chloride monomer, butadiene, and other flammable gases and liquids as a 
function of the tank car volume and the frequency of transportation over 
the years 1965 up to 1972/1973. The results are given as casualities per 
10’ ton miles in Fig. 8. 
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Fig. 8. Frequency of BLEVEs over the years as a function of the volume of the tank cars 
according to the Railroad Tank Car Safety Research and Test Project [ 351. Comparison is 
made by comparing the accident rate per car mile. The dotted points are frequencies 
reduced by a factor of 2.73 according to the volume ratio of the tank cars. Apparently 
jumbo tank cars are at least two times more vulnerable than the smaller cars. 

To compare the casualities per tank car, we reduce the frequency of the 
jumbo tank car explosions by the volume ratio, 113.5/41.6 = 2.73. These 
figures are dotted in the above-mentioned Fig. 8. One can see that the actual 
explosion frequencies of jumbo tank cars are at least double those of the 
normal small tank cars. From the model we expect a ratio of 2.73, and this 
compares favorably with reality. 

In Ref. [ 151, the author summarized catastrophic tank car explosions of 
all kinds in the U.S.A. over more than a decade. The result was that pres- 
surized liquid gas tank cars exploded more frequently than cars containing 
liquid cargo at ambient pressure. The transportation volume is not known, 
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but it may be assumed that it was comparable. As a result one liquid tank car 
exploded versus 4.5 pressurized liquid gas tank cars, where the volume had 
not been determined. 

We now theoretically compare the explosion risk probabilities of a jumbo 
tank car filled with pressurized liquid gases of sound velocity of the order 
1000 m/s or less with the normal tank cars filled with liquids of sound veloc- 
ities 1300 m/s or more. We get a ratio of explosion risks: jumbo tank cars 
filled with liquid pressurized gases to normal tank cars filled with liquids 
> 6. This figure compares well with the actual ratio of 4.5 for all tank car 
sizes. 

From the concept of volume-dependent explosion probability, one can 
extrapolate toward more suitable measures: Replacement of the gross liquid 
volume by multiple cells of small volume, see Fig. 9, drastically reduces the 

Fig. 9. Coil of expanded metal to be inserted into a vessel of somewhat smaller volume. 
This coil shows a porosity in excess of 95 vol.%. In the case of BLEVEs this coil ad- 
ditionally acts as a heat-conductive element for preventing retardation of ebullition 
[15,36]. 



64 

explosion probability. Expanded metals would seem eminently suitable for 
this purpose. It is noteworthy that the porosity of this body, shown in 
Fig. 9, is about 95%. Whereas in the case of BLEVEs this tool worked [36], 
it failed in the case of shooting tests on nitromethane [ 371. 

According to the outlined model, explosion probability additionally 
depends on the radiation loss, which increases with ambient static pressure. 
Indeed tank cars with higher gauge safety valves exploded more frequently 
than those with a lower value, see [ 151. This, however, does not provide 
verification of the presented idea, since the gauge of the safety valves is in 
practice not adjusted to the actual cargo. 


